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A B S T R A C T

Meta-analysis of summary results from published neuroimaging studies independently testing a common hy-
pothesis is performed using coordinate based meta-analysis (CBMA), which tests for consistent activation (in the
case of functional MRI studies) of the same anatomical regions. Using just the reported coordinates it is also
possible to meta-analyse coactivated regions to reveal a network-like structure of coordinate clusters (network
nodes) distributed at the coactivated locations and a measure of the coactivation strength (network edges), which
is determined by the presence/absence of reported activation.

Here a new coordinate-based method to estimate a network of coactivations is detailed, which utilises the Z
score accompanying each reported. Coordinate based meta-analysis of networks (CBMAN) assumes that if the
activation pattern reported by independent studies is truly consistent, then the relative magnitude of these Z
scores might also be consistent. It is hypothesised that this is detectable as Z score covariance between coactivated
regions provided the within study variances are small. Advantages of using the Z scores instead of coordinates to
measure coactivation strength are that censoring by the significance thresholds can be considered, and that using
a continuous measure rather than a dichotomous one can increase statistical power.

CBMAN uses maximum likelihood estimation to fit multivariate normal distributions to the standardised Z
scores, and the covariances are considered as edges of a network of coactivated clusters (nodes). Here it is
validated by numerical simulation and demonstrated on real data used previously to demonstrate CBMA. Software
to perform CBMAN is freely available.

1. Introduction

Coordinate based meta-analysis (CBMA) is an approach commonly
used to estimate the consistently observable effects from multiple inde-
pendent, but related by a shared hypothesis, neuroimaging studies
(Turkeltaub et al., 2002; Wager et al., 2003, 2007; Laird et al., 2005;
Eickhoff et al., 2009, 2012, 2016; Tench et al., 2013, 2014, 2017a). It is
employed to meta-analyse (amongst others) voxel-based morphometry
(VBM), functional magnetic resonance imaging (fMRI), and functional
positron emission tomography (PET) studies, and uses only the reported
summary statistics; coordinates and/or Z scores. In the case of fMRI, for
example, the results reveal estimates of the distribution of activation
peaks (clusters of activation foci) (Turkeltaub et al., 2002; Wager et al.,
2007; Tench et al., 2017b). CBMA’s generally report this distribution as

multiple spatially isolated clusters of coordinates and it is their
anatomical locations on which the interpretation and conclusion are
based.

With coordinate based meta-analysis (MA) results are largely deter-
mined by the consistency with which clusters are reported as activated
(in the case of fMRI studies) by the independent studies. There is, how-
ever, considerable interest in approaches that relate the spatially isolated
clusters. Meta analytic connectivity modelling (MACM) (Robinson et al.,
2010) uses coordinates from large databases such as brainmap (http:
//www.brainmap.org/) to identify regions frequently coactivated (in
the case of fMRI, co-altered in the case of VBM) across multiple domains.
The ability to identify network-like features using a coordinate based
meta-analysis has also been proposed (Xue et al., 2014; Lancaster et al.,
2005; Neumann et al., 2005, 2010; Cauda et al., 2018; Tatu et al., 2018;
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Chu et al., 2015). These methods use voxel-wise analysis, predefined
regions of interest, or significant clusters from the popular activation
likelihood estimate (ALE) CBMA algorithm (Turkeltaub et al., 2002;
Laird et al., 2005; Eickhoff et al., 2009, 2012) to the define network
nodes, and coactivation strength (network edges) is based only on re-
ported coordinates. Results indicate anatomical regions frequently
coactivated (activated together within the same study), which is distinct
from CBMA where only the frequency is important.

It might be argued that if the hypothesis generates consistently
observable spatial effects then the reported Z scores accompanying each
coordinate might also be consistent except for study heterogeneity. For
example, the relative magnitude of activation between the anatomical
regions should be such that studies reporting the smallest (largest) acti-
vation strength in one region also report the smallest (largest) in a
coactivated region; for positively correlated activation strength. Conse-
quently, if the within-study sample variance is small the Z scores reported
by multiple independent studies may be correlated between coactivated
clusters. Indeed, this has previously been shown using clusters derived
from a CBMA (Tench et al., 2017a), motivating development of the new
analysis method proposed here.

Coordinate based meta-analysis of networks (CBMAN) analyses
coactivation of clusters by estimating the covariance of standardised
reported Z scores. A multivariate normal (MVN) distribution model is
fitted and is parameterised such that there are means and variances for
each cluster, plus correlations relating the standardised Z scores in
coactivated clusters. It is these correlations that form the edges in the
network, while the coactivated clusters are the nodes. To test for sig-
nificant correlation between pairwise clusters a permutation method is
used, which after correction for multiple statistical tests reveals a
network of significant coactivation. By comparison with approaches
using just coordinates, the use of standardised reported Z scores provides
the opportunity to consider censoring by the study thresholds andmay be
more sensitive in some cases because dichotomising (coordinate present/
absent within a cluster) can reduce statistical power (Altman and Roy-
ston, 2006). However, interpretation is different in that coordinates do
not explicitly imply correlated Z scores. It should be noted that despite
the network-like nature of coactivation methods, they are indicative only
of consistent coactivation and cannot be interpreted in the same way as
the possibly more commonly considered brain networks defined by
temporal dependency of neuronal activation patterns of anatomically
separated brain regions (van den Heuvel and Hulshoff Pol, 2010).
Nevertheless, coordinate based coactivation methods provide an alter-
native to CBMA, which can be subjected to network analysis (Lancaster
et al., 2005; Neumann et al., 2010).

This article describes coordinate based meta-analysis of networks.
The methods involved in fitting MVN distributions are detailed,
including the subtleties involved with censored data. Ability to estimate
correlation with censored data is demonstrated by numerical experi-
ments. Simulated networks are used to demonstrate the algorithm and
real coordinate data from painful stimulus fMRI studies, and VBM studies
of multiple sclerosis, employed to show feasibility. Type 1 error rate
control is by false discovery rate (FDR) (Benjamini and Hochberg, 1995).
The software to perform CBMAN is provided to use freely (search Neu-
Roi), and test experiments provided for validation.

2. Methods

2.1. The cluster forming algorithm

There is no strict definition of a cluster in coordinate-based analysis,
with each algorithm having different cluster forming approaches.
CBMAN finds peaks in estimated study density and assigns the reported
coordinates to them before further processing to obtain valid clusters. A
minimum number of coordinates defines cluster validity, and the choice
of minimum acts as a constraint on the assignment of coordinates to
clusters. For example, a collection of three coordinates might be assigned

to a bigger cluster/clusters if the minimum was greater than 3, whereas
they might form their own cluster with a minimum of 3 or less. In
common with the popular density-based spatial clustering of applications
with noise (DBSCAN) algorithm CBMAN requires clusters have at least
four coordinates because that is the minimum number needed to define a
three-dimensional cluster volume. Sensitivity to this choice is considered
in the results.

Cluster forming requires the spatial density of reporting studies,
which is estimated on a voxel-by-voxel basis by summation of Gaussian
kernels over independent studies

DðrÞ¼
X

studies i

exp
�
� ðr � riÞ2

2σ2

�
(1)

where ri is the coordinate from study i that is nearest to the voxel centred
on r. The parameter σ must be large enough to smooth away false density
peaks while being small enough to preserve true density peaks; a density
peak is a voxel where the study density estimate is higher than that in
neighbour voxels. Just as with fMRI processing the choice of smoothing
kernel can influence the results, for example in network analysis (Ala-
korkko et al., 2017), and a suitable choice is not always apparent a-priori.
Fortunately, the spatial properties of clusters formed by activation co-
ordinates reported by independent studies have been investigated and
found to be consistent (Eickhoff et al., 2016). Specifically the spatial
spread of coordinates has a standard deviation between 3mm and 5mm
with a large peak at around 4mm, which is modelled here with a trun-
cated normal N(4,0.42) distribution.

Using this empirical spatial spread, choice of σ can be made in a
principled way by simulating clusters with coordinates having standard
spatial deviation drawn randomly (per simulation) from the truncated
N(4,0.42). These coordinates are smoothed to produce a density image
and the number of detectible peaks counted. The value chosen for σ is the
minimum producing no more than one peak in the large majority of
simulations. Avoiding false density peaks is important since they can
cause clusters to split into multiple clusters. It is anticipated that larger
numbers of coordinates require less smoothing, so σ is estimated for
different numbers of coordinates to allow an empirical relationship to be
established for extrapolation. The analysis of the parameter σ is pre-
sented in the results.

Clustering begins by computing an image of study density fromwhich
peaks (proposed cluster centres) are detected (see Fig. (1a) for example).
Coordinates (cluster members) are then assigned to the cluster centres
such that they are only assigned to the nearest, and only the closest from
each study is assigned. This produces clusters with at most one contrib-
uted coordinate per study. However, there is nothing to prevent assign-
ment of coordinates that are unrealistically far from the bulk of the
cluster (outlier coordinates), as indicated by the study density dropping
with distance from the peak before increasing again at the outliers (see
Fig. (1b)). To eliminate outliers, the cluster members are used to compute
a density image by application of the smoothing kernel (equation (1))
with σ conditional on the number of member coordinates. Then from the
image peak density an isolated image object, spatially bound by a min-
imum density threshold of 1 (the density of a single coordinate), is ob-
tained by region growing. Member coordinates falling outside this object
are considered outliers and removed from the cluster and the process
repeated until there are no further eliminations.

An iterative process of removing any clusters having fewer than four
member coordinates is then performed, involving removing the cluster
having the fewest member coordinates and the lowest density at its peak
first, before repeating the clustering process until all clusters have four or
more coordinates.

2.2. Standardised Z scores

The summary effect sizes reported by most studies are the peak Z
score; t statistics and uncorrected p-values are converted to Z scores. This
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score depends on the number of subjects in the study, so may deviate
considerably from being normally distributed, which is undesirable when
fitting MVN distributions. CBMAN uses standardised Z scores, as used in
coordinate based random effect size (CBRES) meta-analysis (Tench et al.,
2017b) and where standardised is by the number of subjects

εai ¼
Za
iffiffiffiffiffi
n*i

p : (2)

This specifies the effect size ε from study i in cluster a as a Z score
standardised using the number of subjects n* in study i. The number of
subjects depends in whether the study is of a single group or a compar-
ison between two groups. For single study groups the value of n* is the
number of subjects. For two group comparison studies the standardiser is

n*i ¼
ni1 � ni2
ni1 þ ni2

; (3)

where ni1 is the number of subjects in group 1 and ni2 is the number of
subjects in group 2.

2.3. Fitting multivariate normal distributions to standardised Z scores

The general form of the k dimensional multivariate normal distribu-
tion is

f ðεÞ¼
exp
�
� 1

2 ðε� μÞΣ�1ðε� μÞ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞkjΣj

q : (4)

For k clusters discovered by the clustering algorithm the network has
k nodes and the assumption of CBMAN is that the standardised reported Z
scores, ε, are distributed as specified in equation (4). The parameters, to
be estimated by maximum likelihood, are then: μ a column vector of
means with k dimensions, and Σ a symmetric covariance matrix of size
k� k. Estimating the parameters of the MVN distribution can be a high
dimensional problem if k is large; and as will be shown, a nonlinear one.
Fortunately, it is a property of the MVN that marginal distributions over
subsets of the dimensions are themselves MVN distributions with the
same subset of parameters. In CBMAN this fact is utilised to estimate
parameters by fitting bivariate normal (BVN) distributions to pairwise
clusters, reducing the problem to estimating multiple sets of 5
parameters.

To fit BVN distributions to the standardised effect sizes in pairwise
clusters at least two clusters must form. The five parameters to estimate
by using maximum likelihood estimation (MLE) are: two means (μ) and
two standard deviations (σ) plus a correlation (ρ). Standardised Z score

pairs for study i in clusters a & b are distributed as

f
�
εai ; ε

b
i

�¼ 1

2πσaσb

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

p exp

 

� 1
2ð1� ρ2Þ

"�
εai � μa

�2
σ2
a

þ
�
εbi � μb

�2
σ2b

� 2ρ
�
εai � μa

��
εbi � μb

�
σaσb

#!
: (5)

To estimate the parameters the log likelihood (LL) is maximised.
There is one additive term to LL for each study in the analysis. A subtlety
in the calculation is that some studies may not contribute a coordinate,
and associated Z score, to either or both of the clusters. In this instance
the effect size is interval censored; it is known only that the value does
not exceed a threshold level, and it is assumed that the censored value is
drawn from the BVN distribution. Statistically the contribution to the LL
of interval censoring is computed by integrating over regions/lines of the
BVN distribution, which is why the problem of fitting the MVN distri-
bution in CBMAN is non-linear.

When the Z score from a study is not censored (the study contributes a
coordinate to both clusters) the additive contribution to the LL is just the
log of equation (5).

If the study contributes to only one of the clusters, say cluster b, one Z
score is censored and known only to fall between �α, where α is derived
from the study threshold for significance using equation (2); the
threshold is often reported, but is estimated by the minimum reported Z
score otherwise. Then the contribution to LL is computed by integration
of equation (5),

log
�Z α

�α
f
�
x; εb

�
dx
�
; (6)

and similar if censored in cluster b. The integral in equation (6) can be
computed analytically using the error function and the conditional dis-
tribution for the standardised Z score in cluster a given the standardised Z
score in cluster b, however for this report it is computed numerically
(Press et al., 1992) using Simpson’s rule.

Another scenario considered by CBMAN is when a study contributes a
coordinate to neither cluster. In this case both Z scores are interval
censored and known only to fall between thresholds �α. The contribu-
tion to LL is then

log
�Z α

�α

Z α

�α
f ðx; yÞdxdy

�
; (7)

which is also computed numerically.
There is one other type of censoring common in neuroimaging studies

whereby coordinates are listed but no Z score is reported; such studies

Fig. 1. Panel (a) shows the study density image
with detected density peaks (red) overlayed.
These peaks form the proposed cluster centres to
which coordinates are assigned. This can assign
outlier coordinates outside the main cluster as
shown in panel (b) where the coordinates within
the main cluster are indicated by black arrows
and an outlier, which causes a second peak, is
indicated by a red arrow. Any coordinates falling
outside of the main cluster bounded by a mini-
mum density of 1 (the density of a single coor-
dinate and shown as a blue curve in the figure) is
considered an outlier and removed.
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report only if the effect is positive or negative. The Z scores are then left
or right censored, known only to be less than -α (left censored) or greater
than þα (right censored) and assumed to be distributed according to
equation (5). This type of censoring can be considered by integration
over regions of the BVN distribution just as for interval censoring. The
general LL term is

log
�Z n

�m

Z q

�p
f ðx; yÞdxdy

�
; (8)

where the integral limits depend on whether censoring is left or right, or
interval if the study reports no coordinate within the cluster. Table 1
indicates the limits for each scenario. Integrals with these limits are
computed numerically, with ∞ limits approximated by α þ6; this mul-
tiple standard deviations beyond the typical values and increasing this
has been found not to alter the results in any significant way.

2.4. Thresholding the correlation between coactivated clusters

The correlation of standardised Z scores (edges) between coactivated
clusters (nodes), estimated by maximising the likelihood, determines the
coactivation network in CBMAN. Since estimates are unlikely to be
exactly zero this produces a fully connected network (every node con-
nected to every other node), which is not very revealing. A method of
thresholding the edges is needed to reduce the network to meaningful
connections between nodes by some criteria. In network analysis of the
brain this thresholding is still an open question but requiring correlation
to be above a minimum magnitude is a common strategy (Zalesky et al.,
2012). Optionally the user may set a correlation threshold in CBMAN,
however this is only for the purpose of visualising simplified networks
rather than producing meaningful results because the number of co-
ordinates per cluster is not fixed; correlation between two small clusters
would require a larger threshold than between two large clusters for the
same evidence of correlation. In CBMAN the primary method of thresh-
olding is statistical and uses a permutation test. The aim is to identify
correlation of reported standardised Z scores between clusters, and the
test used addresses the problem that censored studies can impose
nonzero correlation even in the absence of correlated Z scores. For
example, if half of studies contribute uncensored and uncorrelated Z
scores to coactivated clusters, while the other half are censored, the di-
chotomy of studies can produce apparent significant correlation; such
dichotomy might be of interest but is not the aim of CBMAN. To ensure
that the test is sensitive to correlated standardised Z scores and not the
result of censoring, only the uncensored data are permuted while
censored data acts to constrain the bivariate normal model fit. The con-
strained correlation under permutation then acts as the null hypothesis.

Testing for significant correlation of standardised Z scores between
two coactivated clusters requires that at least five studies report uncen-
sored results in both clusters. While with just four studies there are 24
permutations yielding a minimum possible p-value of 0.042, which is
slightly less than the typical 0.05, this is ultimately unlikely to be
declared significant after correction for multiple tests and would increase
the number of tests making the correction more conservative. Signifi-
cance testing proceeds by fitting of the BVN distribution to estimate the
correlation of effects before repeatedly re-estimating having permuted
the uncensored effects in one cluster; this is the normal approach to
estimating significance of correlation using a permutation test but the

null hypothesis is not zero correlation because of censoring. The p-value
is the proportion of correlation estimates that are as, or more, extreme
under permutation than the unpermuted estimate; positive correlation
must be more positive, while negative correlationmust be more negative.
Permutation only affects the correlation parameter of the BVN so the
problem reduces to a computationally undemanding one dimension. If
there are 7 or fewer uncensored effects all possible permutations are
computed (for 7 the number of permutations is just 7!¼ 5040) using
Heap’s algorithm (Heap, 1963), otherwise the p-value is estimated using
5000 random permutations.

The number of edges is quadratic in the number of nodes in the
network so correction for multiple statistical tests is necessary and is
handled by FDR. The false discovery rate is known to cause issues when
used in voxel-wise analyses because of the possibility of very many
positive voxels, which causes a high expected number of false positive
voxels potentially producing multiple false positive clusters. However,
since CBMAN tests network-edge-wise rather than voxel-wise it produces
a relatively small number of positive results and consequently a small
expected number of false positives; less than 1 if fewer than 20 significant
effects for FDR of 0.05. This property was demonstrated previously by
comparing the voxel-wise FDR option in the ALE algorithm to the cluster-
wise FDR used by the CBRES algorithm (Tench et al., 2017b).

3. Experiments

In this report the concept and computation are validated using
simulated data. To demonstrate applied utility, coordinates extracted
from published studies are used. In the absence of available software for
other coactivation based methods (Xue et al., 2014; Lancaster et al.,
2005; Neumann et al., 2005, 2010; Cauda et al., 2018; Tatu et al., 2018;
Chu et al., 2015), the popular ALE algorithm is used for comparison.
While this does not produce results based on coactivation it is useful to
contrast the results with CBMA, and where there is agreement on the
clusters the two methods are expected to be similar given the same data,
which would in part validate the clustering algorithm used in CBMAN.

3.1. Coordinate systems and images

CBMAN uses the grey matter tissue class image from the ICBM 452
atlas (Mazziotta et al., 2001). Transformation between MNI (Montreal
Neurological Institute) and Talairach (Talairach and Tournoux, 1988)
space is performed as detailed in (Lancaster et al., 2007).

3.2. Establishing clustering settings

An empirical function relating the smoothing kernel width (σ) to the
number of member coordinates (n) in a cluster is derived by simulation.
This is done in a principled way given that coordinates within clusters
have a spatial standard deviation of between 3mm and 5mm with a
mode at around 4mm (Eickhoff et al., 2016). For each value of σ, 5000
simulations are performed for clusters of 2, 3, 4, 5, 10, 15, 20, and 30
coordinates, and in each the number of density peaks counted. For a
given n the aim is to choose σ such that on average false peaks (more than
one peak per simulated cluster) are rare while also avoiding over
smoothing; false peaks can prevent formation of clusters by incorrectly
splitting the coordinates from one cluster into multiple clusters. This is
achieved in practice by the minimum σ to produce only a small per-
centage of false peaks per experiment while also avoiding false negatives
whereby coordinates are excluded from the simulated clusters.

3.3. Simulated meta-experiments

Numerical simulation is used to validate the code and to test: the
ability to estimate parameters of the BVN distribution when data are
censored, and the ability to identify known networks.

To test parameter estimation for censored data BVN data (50

Table 1
Integral limits for the calculation, using equation (8), of the LL contribution for
studies that do not report Z scores, t statistics, or uncorrected p-values.

Censor type Lower integral limit Upper integral limit

Left -∞ -α
Right α ∞
Interval -α þα
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experiments in total) are simulated with random parameters μa, μb, σa, σb,
ρ; mean parameters are uniform random 0.6�μ� 1.2, standard de-
viations are uniform random 0.2�σ� 0.6, and correlation is uniform
between�1. These means and standard deviations represent the range of
results presented in (Tench et al., 2017a). Data are interval censored if
they are <3.09/√20¼ 0.7 (representing the minimum for commonly
used Z score threshold of 3.09, and 20 subjects), and 10% of studies are
left/right censored; reflecting the observation that the majority of studies
do report Z scores. The known simulation parameters and the corre-
sponding estimates are qualitatively compared by scatter plot for exam-
ples with 20 studies and 50 studies to test the ability of MLE to estimate
the BVN parameters. To show the impact of censoring on estimation,
least squares estimation is used to estimate the parameters on the un-
censored data and the correlation parameter compared, graphically, to
the MLE estimate after censoring; a histogram of the proportion of
censored data is also depicted.

A simulated network experiment involves 6 coactivated clusters and
four different covariance matrices generating four different networks. Z
scores are simulated with a mean of 5, and a standard deviation of 1.
Censoring is at a Z score of 3.09, the number of subjects is 20, and the
number of studies 30. The correlation parameter is set at a level of 0.707
(R2¼ 0.5), and correction for multiple statistical tests is using
FDR¼ 0.05. The first network simulated involves a diagonal covariance
matrix, so no network is expected since the correlations should be sta-
tistically zero; this is an important example as no network should be
produced providing the correction for multiple tests is successful. A
second network is simulated with covariance matrix having only one off-
diagonal covariance for which the expected network has two nodes and
one edge. A third network is simulated with a block diagonal covariance
matrix generating two independent networks. Finally, a covariance ma-
trix with all off-diagonal elements involving the correlation is expected to
produce a fully connected network.

3.4. Real data example: fMRI of painful stimulation

An example of a functional MRI meta-analysis, painful stimulation,
was provided in the CBRES MA report. Here that data are used for
CBMAN.

3.5. Real data example: voxel based morphometry of multiple sclerosis

It is well known that multiple sclerosis causes atrophy of the grey

matter, and repeatable patterns of atrophy have been demonstrated by
multiple VBM studies. The data used in this example are taken directly
from the CBRES report. Both CBRES meta-analysis and CBMAN are
performed.

3.6. Sensitivity of CBMAN to the clustering algorithm

The clustering algorithm employed by CBMAN has two parameters:
the false peak rate and the minimum number of coordinates needed to
form a valid cluster. In CBMAN the chosen FPR is 1% and minimum
number of coordinates is 4. To test the sensitivity to these parameters
both the MS and pain coordinate data are analysed for FPRs of 0.1%,
0.5%, 1%, and 5% and minimum number of coordinates of 2, 3, 4, and 5.

4. Results

4.1. Establishing clustering settings

By simulating coordinates with standard deviation drawn at random
from N(4,0.42) truncated to between 3mm and 5mm an empirical
function relating the smoothing kernel σ to the number of coordinates
was established. Simulations were performed for clusters of 2, 3, 4, 5, 10,
15, 20, and 30 coordinates each for a range of σ, and for each the pres-
ence of false peaks (more than one peak per simulated cluster) noted.
Fig. (2) shows examples of average false peak rates (FPR) as a function of
σ for 5, 10, 15, and 20 coordinates, and also shows that exponential
functions describe this data (dotted lines). By estimating the exponential
trend the value of σ producing average false peak rates of 0.1%, 0.5%,
1%, 5%, and 10% per cluster was computed for each number of co-
ordinates and plotted in Fig. (3).

Choice of model for σ from this analysis is a trade-off between
excessive smoothing with σ too large and false density peaks if σ is too
small. Given the false peak rate the number of study density peaks per
study such that there is good chance (80%) no false peaks is binomial:
n¼ 220 for FPR¼ 0.1%, n¼ 44 for FPR¼ 0.5%, n¼ 23 for FPR¼ 1%,
n¼ 4 for FPR¼ 5%, and n¼ 2 for FPR¼ 10%. Clearly for a false peak rate
of 0.1% the number of peaks per study is in the order of the number of
coordinates typically, and so represents smoothing by an unnecessarily
large σ. On the other hand, for FPR of 5% or 10% even a few study density
peaks result in a high chance of false peaks. The pain and MS data used in
this report produce around 30 peaks, so choice of 1% false peak rate used
here would seem reasonable, with about 74% chance of no false peaks in

Fig. 2. Average false peak rates per cluster shown as a function of the smoothing kernel σ for between 5 and 20 coordinates. The fitted trend lines (dotted lines) have
the form r(σ)¼ A� exp(-b� σ), where A and b are parameters.
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these examples. Consequently, the empirical relationship between σ and
the number of coordinates n in the cluster used in CBMAN is

σðnÞ¼ 8:895� n�0:22 (9)

for n� 5 coordinates, while n< 5 is treated as special cases. Since this
choice is not the only one possible, others will be considered in the results
on the MS and pain coordinate data. The final clustering procedure used
in CBMAN is depicted in Fig. (4).

Fig. (5) demonstrates the average simulated cluster volumes pro-
duced using equation (9) and the cluster forming algorithm used by
CBMAN. An important feature is that σ is reducing with the number of
coordinates making up the cluster resulting in volumes that tend to
converge for higher numbers of coordinates, which is not true for fixed
smoothing (Tench et al., 2014, 2017b; Eickhoff et al., 2016). Indeed,
fixed smoothing kernels can paradoxically result in escalating false

positives as the number of studies analysed increases (Tench et al., 2014)
because cluster volumes also increase to inevitably include coordinates
that do not belong. Importantly, using equation (9) to define the
smoothing kernel the rate of false negative coordinates (simulated co-
ordinates not included in the cluster) was always below 0.36% for these
simulations.

4.2. Simulated data experiment

It is a requirement that accurate estimates of correlation of stand-
ardised Z scores between coactivated clusters is possible for a reasonable
number of studies; typically, CBMA involves 10’s of studies. For simu-
lated BVN distributed data, using realistic standardised Z scores and
censoring thresholds, Fig. (6) shows error due to maximum likelihood
estimation of parameters. With 20 studies (top) the parameters can be
estimated, but as expected the sampling error is evident. Nevertheless,
simulations of strong correlation are quite reliable. Increasing to 50
studies considerably improves estimates and therefore reliability of the
analysis.

Fig. 3. The estimated value of the smoothing kernel width σ as a function of the
number of coordinates in a cluster for average false peak rates of 0.1% (blue
circle), 0.5% (orange square), 1% (grey triangle), 5% (yellow diamond), and
10% (unfilled circle). For five or more coordinates there is an empirical rela-
tionship between σ and the number of coordinates (n) with the form
σ(n)¼ A� n-x having parameters A and x. For n� 4 σ is not well described by
this power function.

Fig. 4. The procedure for discovering valid clusters for CBMAN.

Fig. 5. The simulated cluster volumes produced using σ giving an estimated
false peak rate of 1%. The cluster volume tends to a fixed volume for large
numbers of coordinates because of the monotonically reducing σ.
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While Fig. (6a) shows that estimation of parameters from a small
sample is possible when the data are censored, it does not show how
much variance might be due to the censoring. By estimating the pa-
rameters before censoring using analytic least squares estimation, the
component of variance due to censoring can be explored. Fig. (6b) shows
the correlation parameter estimated by MLE on censored data plotted
against the least squares estimate on uncensored data. It also shows the
distribution of the proportion of data censored. Clearly the major source
of variance in the parameter estimates is the sampling, rather than the
censoring; despite an average of 38% of data being censored in this
experiment.

By simulating known coactivation networks CBMAN can be shown to
detect MVN censored data and threshold the results by FDR. Networks
with 6 clusters (nodes) were generated with various MVN covariance
matrices. The 6 clusters were all reliably detected by CBRES MA for each
network variant, and the resulting clusters shown in Fig. (7).

Fig. (8) shows the results of CBMAN on 4 different network config-
urations that use the 6 clusters shown in Fig. (7); graphs are produced
using automatically generated R (Team, 2008) code and requires the
igraph package (Csardi and Nepusz, 2006). The first (top left) shows the
network with a diagonal covariance matrix where all correlations are
statistically zero, hence no network is detected. This example also

highlights a difference between CBMAN and other coactivation methods
using only coordinates, which might detect a significant coactivation
network despite the zero covariance of the standardised Z scores. The
second network (top right) includes only one off-diagonal element

Fig. 6. Demonstration of parameter estimation using simulated censored data. In Fig. (6a) the top row is an example with 20 simulated studies, representing a small
meta-analysis. The bottom row of Fig. (6a) uses 50 simulated studies, representing a moderate sized meta-analysis. Estimates are better for the larger number of
studies, as expected. In Fig. (6b) the impact of censoring is considered by comparison of analytic least squares estimates of the parameters using uncensored data and
the MLE estimates using censored data. These show that censoring is not a major source of variance on the parameter estimates, despite 38% data censoring on average
in this experiment.

Fig. 7. The clusters detected by CBRES MA of the simulated network test data;
these results are independent of the network structure.
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(covariance) and so the network consists of only two nodes connected by
one edge. The third example (bottom left) shows a network with a block
diagonal covariance matrix, which forms two independent networks as
depicted. Finally (bottom right) the covariance matrix specifies a
network where effect sizes in each cluster are correlated with every
other, as successfully found by CBMAN. Contrasting Fig. (7) with results
shown in Fig. (8) demonstrates the difference between CBMA and
CBMAN; CBMAN considers how the clusters coactivate as measured by
correlated reported Z scores, while CBMA has no mechanism to consider
such correlation.

4.3. Painful stimulus in healthy subjects

Functional MRI studies using painful stimulation of healthy subjects
were collected and used to demonstrate CBRES MA previously (Tench
et al., 2017b). This data includes 22 independent studies of 315 healthy
volunteers and consists of 361 coordinates and the associated Z scores.
Fig. (9) shows clusters found significant by CBMAN (using FDR¼ 0.05)
and by the ALE algorithm (using only the coordinates and the recom-
mended cluster level FWE (Family Wise Error) at 0.05 and cluster
forming threshold of 0.001). There are many significant correlations as
indicated by the graph plot, and often these are between symmetric
clusters. An example of a significant correlation is plotted in Fig. (10)
along with an example of where correlation is not significant. Comparing
the ALE result to that of CBMAN shows more significant results from
CBMAN for this data. This might be due to the use of FDR instead of the
more conservative FWE, or because of the different hypothesis being
tested. Nevertheless, where the two algorithms agree the clusters are
quite similar, which helps to validate the CBMAN clustering method.

4.4. Voxel based morphometry in multiple sclerosis

VBM studies of MS patients were collected to demonstrate CBRES MA
previously (Tench et al., 2017b), and are used unaltered here to
demonstrate CBMAN. This data consists of 27 independent studies of
grey matter atrophy in MS and clinically isolated syndrome patients

comparing to healthy controls; in total the study includes 871 patients
and 671 healthy controls and includes 333 coordinates and associated Z
scores. Fig. (11) shows the clusters declared significant by both the ALE
method and CBMAN; ALE analysis uses only the coordinates and the
recommended cluster level FWE at 0.05 and cluster forming threshold of
0.001, while CBMAN used FDR¼ 0.05. The correlation between sym-
metric clusters is generally significant. An example of significant corre-
lation is plotted in Fig. (12) along with an example where the correlation
is not significant. Just as with the pain coordinate analysis, there are

Fig. 8. Results of coordinate based meta-analysis of networks. Four networks are simulated using the clusters shown in Fig. (7). In each case the statistically significant
nodes (clusters) and edges are shown, along with the associated graph and the form of the covariance matrix of the multivariate normal distribution of effects that
define the network.

Fig. 9. The ALE MA (top cluster images) and CBMAN (bottom cluster images)
analysis on functional MRI studies of painful stimulus. The graph indicating
correlation of standardised Z scores between many coactivated clusters is also
shown (bottom row).
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differences between the ALE results and the CBMAN results but there is
also good agreement for some clusters.

4.5. Sensitivity of CBMAN to the clustering algorithm

The pain and MS coordinate data were reanalysed with false peak
rates of 0.1%–5% and minimum number of coordinates for valid clusters
between 2 and 5. Resulting networks of coactivated clusters are plotted
such as to preserve the Talairach coordinates of the cluster peaks; for a
peak at Talairach location x, y, z the location on the plot is (z þ z0)� x/
(x2þy2), (z þ z0)� y/(x2þy2), where z0 is the minimum Talairach Z co-
ordinate. The plot axes indicate the x¼ 0 and y¼ 0 lines as well as the
z¼ 0 circle, where inside the circle z is negative. This makes comparison
of the clusters between analyses easier since the same cluster peak
location appears on the plot in the same location.

Fig. (13) shows sensitivity to the choice of false peak rate: left is the
MS VBM coordinates example and right is the pain fMRI coordinates
example. In each figure the FPR is shown top left. Comparing to the FPR
used in CBMAN (1%) the most different is at FPR 5%, where the
smoothing kernel width is smallest and consequently some of the clusters
have not formed as anticipated. For FPR of 0.1% and 0.5% there are
differences, but many of the clusters have formed and many of the sig-
nificant edges are the same as those at FPR of 1%. FPR of 0.1% arguably
over smoothes to achieve low risk of false peaks. The choice between FPR
of 0.5% or 1% is less clear, but the strongest edges (thickest lines) are
similar, as are the clusters, and either choice would lead to largely similar
interpretation of the analysis.

Fig. (14) shows sensitivity to the choice of minimum coordinates for
valid clusters: left is the MS VBM coordinates example and right is the
pain fMRI coordinates example. In each figure the minimum is shown top
left. Comparing to the minimum used in CBMAN (4) the most different is
with a minimum of 2, where the smoothing kernel width is large (see
Fig. (3)) so over smoothing has supressed the density peaks. For mini-
mum of 3 or 5 there are differences, but many of the clusters have formed
and many of the significant edges are the same as those at a minimum of
4. Choice of 3, 4, or 5 produces relatively similar results that would not

Fig. 10. Scatter plot demonstrating the positive correlation of standardised Z scores in the left/right insula (clusters 1 & 4 in graph in Fig. (9)) and a non-significant
correlation for left insula v right middle frontal gyrus (cluster 4 & 6 in graph in Fig. (9)) for the pain coordinate data. Markers falling on the axes indicate
censored effects.

Fig. 11. Clusters found by ALE meta-analysis (top row of cluster images) and
CBMAN for VBM studies of MS. The graph indicating correlation of standardised
Z scores between coactivated clusters is also shown (bottom row).

Fig. 12. Scatter plot demonstrating the positive correlation of standardised Z scores in the left/right thalamus (clusters 1 & 2 in graph in Fig. (11)) and non-significant
correlation between the right thalamus and left superior temporal gyrus (Thalamus is cluster 1 in Fig. (11) while the temporal gyrus cluster is missing because of lack
of significance) for the MS coordinate data. Markers falling on the axes indicate censored effects.
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greatly modify the interpretation of the analysis. Increasing the minimum
further eliminates clusters formed from too few coordinates.

5. Discussion

Here a method of performing a meta-analysis of summary results
reported by functional MRI or voxel-based morphometry studies has
been presented. The fundamental assertion is that the multiple sum-
maries (coordinates and Z scores) reported by each study represent a
network of coactivated (co-altered in the case of VBM) effects. CBMAN
uses only the data needed to perform coordinate based meta-analysis but
tests a different hypothesis, and software to perform the analysis (Neu-
Roi) is freely available.

It is an implicit assumption of CBMA that the results tabulated in fMRI
and VBM articles are independent, or at least any dependency is not
considered. However, multiple activations/grey matter changes might
also be considered as a pattern of coactivated or co-altered effects. In
CBMAN the pattern is formed by multiple spatially separated but coac-
tivated clusters with standardised Z scores that correlate. Fitting a high
dimensional MVN distribution to the standardised Z scores is a non-linear
problem, however the mathematical property that the marginal bivariate
normal distributions involving pairwise clusters have the same parame-
ters as the respective MVN parameters makes fitting feasible in the

presence of censored data. Maximum likelihood estimation for censored
data is by integration over portions of the BVN distribution, which is
accurately handled numerically.

Coordinate based meta-analysis of networks and coordinate based
meta-analysis should be considered complementary. If CBMA reveals
multiple significant clusters while CBMAN reveals no clusters, this might
indicate lack of coactivation despite the consistent involvement of re-
gions highlighted by the clusters or uncorrelated reported Z scores; a
simulated example of this was demonstrated using a network generated
by MVN effects with a diagonal covariance matrix (see Fig. (8)). On the
other hand, if standardised Z scores are detectibly correlated between
spatially separate but coactivated regions CBMAN might reveal a
network whether such effects are detected by CBMA or not.

The CBMAN algorithm relies on coordinate clustering using a density-
based method. There is no strict definition of cluster but using the
observed features of coordinates (Eickhoff et al., 2016) the smoothing
kernel width was chosen in a principled way through simulation. It also
requires a minimum number of coordinates making a valid cluster, and
here 4 is chosen to be in line with the popular DBSCAN algorithm (Ester
et al., 1996) that requires a minimumDþ1, where D is the dimensionality
of the space. It was shown in Fig. (9) and (11) that the clusters detected
by CBMAN are similar to those reported by the popular ALE algorithm,
which has been utilised in many meta-analyses; while this is not a

Fig. 13. Clustering algorithm sensitivity to false peak rate. For 1% or lower many of the clusters are similar, as are some of the edges. At 5% the reduced smoothing
kernel width has eliminated some clusters by causing false peaks.

Fig. 14. Clustering algorithm sensitivity to the choice of minimum number of coordinates for a valid cluster. For a minimum of 4 or 5, there are few differences in the
results. For a minimum of 2 the smoothing kernel width is quite large (see Fig. (3)) and has smoothed away some peaks. Increasing the minimum beyond 5 eliminates
clusters that are too small.

C.R. Tench et al. NeuroImage 205 (2020) 116259

10



validation, it at least indicates a consistency with an established method
despite the different approach to clustering. Nevertheless, these param-
eters might have been chosen differently so the impact of alternative
reasonable choices has been explored. Fig. (13) and (14) depict analyses
using different false peak rates and minimum numbers of coordinates for
valid clusters, and the results are quite predictable from the affect these
parameters have on the smoothing kernel width (Fig. (3)) used to define
the clusters. For 5% FPR, which has a relatively small smoothing kernel
width, it is expected that some clusters fail to form and indeed multiple
clusters edges are no longer found significant compared to FPR 1%. For
FPR less than 1% the clusters are modified as the smoothing kernel width
increases, but many of the findings remain consistent. Fig. (3) shows how
σ increases rapidly below a minimum of 4 or 5 coordinates per valid
cluster. Therefore, requiring only 2 coordinates to define a valid cluster
demands a large smoothing kernel width to achieve 1% FPR and conse-
quently many of the study density peaks used to define clusters are not
detected. For a minimum of 3 coordinates most of the coactivation
network structure has been detected compared to the chosenminimum of
4. Increasing the minimum further eventually leads to elimination of
clusters that are too small.

The CBMAN algorithm relies on a permutation test to threshold the
edges with sufficient evidence for correlated Z scores. Permutation is
restricted to the uncensored data and constrained by censored data. This
is a modification of the normal permutation test for correlation, which is
necessary because censored data can impose non-zero correlation even
when the effects are permuted; testing against a null hypothesis of zero
correlation can produce significant results even in the absence of corre-
lated effects because of censoring. Significant results from this test have
standardised Z scores that correlate statistically more than the non-zero
null, which is more demanding than the usual null hypothesis of zero
correlation.

In this report CBMAN has been validated using simulated data with
known properties. Fig. (6) indicates the ability to estimate a realistic
range of parameters for 20 and 50 studies with simulated censoring and
as expected estimation is better with more studies. The figure also shows
that parameter estimates are not substantially affected even by large
proportions of data being censored. Beyond validation coordinates from
published studies have also been used to demonstrate example output
from analysis of real data. The two examples are analyses of functional
MRI studies (painful stimulation) and of VBM of grey matter (in multiple
sclerosis). This data was originally collected to demonstrate CBRESmeta-
analysis and have not been altered for CBMAN, emphasizing that no
additional data are required than for CBMA; only coordinates and Z
scores are needed. The strongest correlations tended to relate to spatial
symmetry in the results, and this was true for both functional and VBM
analyses.

Like all coordinate-based algorithms results should be judged criti-
cally, as they have elements that are empirical rather than based on
established fact. For example, some algorithms use a null hypothesis
generated by randomising coordinates into a 3D space, yet there is no
strong consensus on the method of randomisation or the specification of
the space and each algorithm opts for different definitions. CBMAN does
not perform randomisation, but empirical clustering algorithm choices
are still required. Furthermore, methods based on just coordinates tend
not to take account of studies reporting no coordinates, while at least
some of (Tench et al., 2017b; Albajes-Eizagirre et al., 2018; Costafreda,
2012) those that also use the Z scores as an effect size make corrections
for censoring. However, the Z scores themselves represent only a statis-
tical effect and are not biologically meaningful. Other limitations include
the choice of correction for multiple statistical tests, with some authors
suggesting combining empirical p-value and z score thresholds (Radua
et al., 2012) while others use either FDR (Tench et al., 2017b) or FWE
(Wager et al., 2007; Eickhoff et al., 2012). Therefore, the results obtained
from coordinate-based analyses are dependent not only on the data being
meta-analysed, but also the choice of analysis method; a similar problem
is true of the software packages used in the studies themselves (Bowring

et al., 2019). Coordinate based methods should therefore be considered
indicative of potentially interesting effects and used to generate hy-
potheses. These could then be tested in well-designed prospective
studies.

The requirements of performing and reporting CBMAN analysis are
similar to those of CBMA. Firstly, the method assumes that studies are
independent. It is important that multiple experiments on the same
subjects are not considered independent (Wager et al., 2007; Turkeltaub
et al., 2012) as this will produce a known form of bias common to
meta-analysis (Tram�er et al., 1997), and consequently reduce the quality
of evidence. It is also important to provide the data analysed along with
any publication; typically, multiple experiments are reported per study
and it can be difficult to know which experiments have been included,
and therefore to reproduce the analysis, without the data. Provision of
data in any meta-analysis is a PRISMA (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses) (Moher et al., 2009) require-
ment, and only involves inclusion of a small text file. The use of princi-
pled control of the type 1 error (Bennett et al., 2009) is also necessary in
meta-analysis to provide evidence of effect. In CBMAN, principled con-
trol of the type 1 error is by FDR (Benjamini and Hochberg, 1995), which
should be set appropriately small (FDR�0.1) to prevent possible exces-
sive false positive results. For reports the location of the clusters (nodes)
are relevant, just as for CBMA.

6. Summary and conclusions

Coordinate based meta-analysis is a very popular approach for
discovering regions consistently activated (fMRI) or with altered grey
matter (VBM) over multiple independent neuroimaging studies. Another
approach is to analyse for regions consistently coactivated or co-altered,
and this has previously been performed using just the reported co-
ordinates. Here this approach is extended to require that the relative
magnitude of activation, as measured by the Z score accompanying each
coordinate, is also consistent as measured by correlation of standardised
Z scores between coactivated regions. The results from CBMAN are a
network of coactivated (or co-altered) spatial coordinate clusters (nodes)
indicating spatial consistency of reported activation, connected by edges
where the standardised reported Z scores have consistent relative
magnitude across study. This may generate interesting hypotheses that
can be tested in well-designed prospective studies.
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